Testosterone-dependent increase in blood pressure is mediated by elevated Cyp4A expression in fructose-fed rats

TitleTestosterone-dependent increase in blood pressure is mediated by elevated Cyp4A expression in fructose-fed rats
Publication TypeJournal Article
Year of Publication2012
AuthorsVasudevan H, Yuen VG, McNeill JH
JournalMol Cell Biochem
Date Published01/2012

Endothelial dysfunction and increased blood pressure following insulin resistance play an important role in the development of secondary cardiovascular complications. The presence of testosterone is essential for the development of endothelial dysfunction and increased blood pressure. Testosterone regulates the synthesis of vasoconstrictor eicosanoids such as 20-hydroxyeicosatetranoic acid (20-HETE). In a series of studies, we examined: (1) the role of the androgen receptor in elevating blood pressure and (2) the effects of Cyp4A-catalyzed 20-HETE synthesis on vascular reactivity and blood pressure in fructose-fed rats. In the first study, intact and castrated male rats were made insulin resistant by feeding fructose for 9 weeks following which their superior mesenteric arteries (SMA) were isolated and examined for changes in endothelium-dependent relaxation in the presence and absence of 1-aminobenzotriazole (ABT) and N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS), which are inhibitors of 20-HETE synthesis. In another study, male rats were treated with either ABT or the androgen receptor blocker, flutamide, following which changes in insulin sensitivity, blood pressure, and vascular Cyp4A expression were measured. In the final study, HET0016, which is a more selective inhibitor of 20-HETE synthesis, was used to confirm our earlier findings. Treatment with HET0016 or ABT prevented or ameliorated the increase in blood pressure. Gonadectomy or flutamide prevented the increase in both the Cyp4A and blood pressure. Furthermore, both ABT and DDMS improved relaxation only in the intact fructose-fed rats. Taken together our results suggest that in the presence of testosterone, the Cyp4A/20-HETE system plays a key role in elevating the blood pressure secondary to insulin resistance.

Alternate JournalMol. Cell. Biochem.
PubMed ID21894443
Grant List / / Canadian Institutes of Health Research / Canada